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Abstract. We analyze the ferromagnetic Ising model on non-Euclidean scale invariant lattices with ape-
riodic interactions (JA, JB , JC , JD) defined by Rudin-Shapiro substitution rules with Migdal-Kadanoff
renormalization (MKR) and transfer matrix (TM) techniques. The analysis of the invariant sets of the
zero-field MKR transformation indicates that the critical behavior, completely distinct from the one of the
uniform model, is described by a new off-diagonal fixed point. This contrasts with other aperiodic models
where the new critical behavior is described by a period-two cycle. With the new fixed point, values for
the thermal critical exponents, α and ν, as well as the period of log-periodic oscillations, are obtained.
Exact recursive maps for all thermodynamical functions are derived within the TM approach. The explicit
dependence of the thermodynamical functions with respect to temperature is evaluated by the numerical
iteration of the set of maps until a previously chosen convergence is achieved. They also indicate that,
depending on the actual choice for the aperiodic coupling constants, the magnetic exponents (β and γ)
assume different values. However the Rushbrook relation is always satisfied.

PACS. 05.50.+q Lattice theory and statistics – 05.10.Cc Renormalization group methods –
64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions –
61.44.Br Quasicrystals

1 Introduction

Spin models with aperiodic interactions can be determinis-
tically constructed with a proper substitution rule for a fi-
nite set of symbols (or letters) in subsequent steps [1]. De-
terministic aperiodicity may be introduced into the model
by using different coupling interactions between the spins
according to the order of symbols in such a sequence [2],
much in the way that was adopted with success for the
analysis of electronic systems [3].

The investigation of the critical behavior of determin-
istic aperiodic models uses Luck’s criterion for relevant or
irrelevant fluctuations [4]. According to this formulation,
relevant fluctuations in the values of the coupling con-
stants bring the aperiodic system out of the universality
class defined by the uniform one. This is caused by struc-
tural instability of the renormalization flow in the orig-
inal parameter space with respect to the new dynamics
imposed on an enlarged space by the aperiodic sequence.
The critical properties are then described by new invariant
sets in the new parameter space.

In a previous work [5], one of us investigated some pre-
liminary aspects of an aperiodic Ising model induced by
the four letter Rudin-Shapiro sequence within a MKR ap-
proach. This sequence plays a singular role in the anal-
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ysis of aperiodic systems as its wandering exponent Ω,
the value of which is related to the structural stability of
the invariant sets, is equal to the one obtained for the fully
random situation. According to that analysis, fluctuations
induced by the RS sequence are relevant, so that the crit-
ical properties differ from those of the uniform system.

The purpose of this work is to present a detailed anal-
ysis of this system, addressing both the structure of its
renormalization flow in the parameter space as well as
the thermodynamical properties. Values for the specific
heat and correlation exponents, α and ν, and the fre-
quency of the log-periodic oscillations ω that are observed
in the vicinity of the critical temperature are obtained
after the identification of the invariant sets and their sta-
bility properties within MKR approach. They can also be
evaluated from the corresponding thermodynamical quan-
tities in the neighborhood of the critical point, which are
obtained from the TM recurrence relations. This proce-
dure uncovered a new result: the break of universality of
the magnetic exponents β and γ, which become dependent
of the relative strength of the four coupling constants.

The behavior of aperiodic systems is very sensitive to
the introduction of disturbances and averages in the se-
quence that generates the aperiodicity, as occurs in most
perturbation approaches. On the other hand, it is virtu-
ally impossible to exactly treat such systems on Euclidean
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systems. As the main issue of this work is to accurately
describe the influence of aperiodicity, we are forced to
resort to other strategies, where this effect can exactly
be dealt with. The one adopted in this work is to insert
aperiodicity into the scale invariant Diamond Hierarchical
Lattices (DHL). Models on these structures undergo phase
transitions, so that the effect of aperiodicity on the critical
behavior can be analyzed. Such lattices are not physically
realizable but, as they can be regarded as a MKR approx-
imation to Euclidean lattices, the results obtained herein
are relevant to uncover the behavior of aperiodic actual
systems.

The rest of the work is organized as follows: In Sec-
tion 2 we present a brief discussion of our model. In Sec-
tion 3 we present the MKR formulation of the problem and
discuss the results produced for the exponents α and ν and
the frequency ω of log-periodic oscillations. We also dis-
cuss the new invariant sets and flow in parameter space.
In Section 4 we discuss the main steps for formulation of
the problem in the TM formalism. In Section 5 we present
the results produced by the recurrence maps. The expo-
nents α and ν agree with the values from MKR, but the
frequency ω misses a factor 2. In this section we also dis-
cuss the results that indicate the break of universality
of the magnetic exponents observed within the TM ap-
proach. Finally, Section 6 closes with concluding remarks.

2 Rudin-Shapiro sequence and Ising models

The Rudin-Shapiro aperiodic 4-letter sequence is based on
the following substitution or inflation rule:

A → AC , B → DC ,

C → AB , D → DB .
(1)

The usual choice is to set up the zero-th order genera-
tion to letter A. In order to provide a concise notation for
the models constructed with the help of Rudin-Shapiro
sequence, it is useful to define the maps µ(�) and ζ(�) as,
respectively, the first and second letters of the inflation
rule (1), namely

µ(A) = µ(C) = A , µ(B) = µ(D) = D ,

ζ(A) = ζ(B) = C , ζ(C) = ζ(D) = B .
(2)

The substitution matrix M of a sequence relates the
number of symbols in two subsequent steps. For the
Rudin-Shapiro rule,

M =




1 0 1 0

0 0 1 1

1 1 0 0

0 1 0 1




, (3)

and its eigenvalues are λ1 = 2, λ2,3 = ±√
2, λ4 = 0. The

wandering exponent

Ω =
log |λ2|
log λ1

=
1
2
, (4)
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Fig. 1. Basic graphs to set up the MKR transformation for
an Ising model on a DHL with p = 2 branches whose coupling
constants J�, � = A, B, C, D are defined by Rudin-Shapiro in-
flation rule (1). The decimation procedure follows the corre-
sponding deflation rule µ(�) ζ(�) → � where µ(�) and ζ(�) are
given by (6). P1 and P2 are the root sites of DHL.

assumes the value required to satisfy Harris criterion, ac-
cording to which the presence of random disorder on spin
models with ω ≥ 1/2 may change its critical behavior.

Luck’s work extends, in a heuristic approach, Harris
criterion to aperiodic systems. An exact version of this
criterion for DHL’s has been presented in reference [6]. It
states that relevant fluctuations, i.e., those for which

Ω > Ωc = 1 − 1
ν

= 1 − df

2 − α
, (5)

do cause a change in the critical properties.
For the present investigation we adopt a formal

Hamiltonian

H = −
∑
(i,j)

Jijσiσj − h
∑

i

σi. (6)

σi = ±1 are Ising spin variables placed on each site of
the DHL, interacting only with their first neighbors, as
indicated by the notation (i, j). To fix the investigation
of aperiodicity in a square lattice, let us consider an axial
direction so that Jij vary only along it, keeping the system
invariant along transverse direction. In order to focus on
the exact effect of aperiodicity, we consider the system
within the MKR scheme.

The MKR on a square lattice consists to successively
reducing basic cells to a single bond linking to root sites,
but it can be better explained with the help of DHL’s [7,8].
These are recursively constructed from an initial unit, a
line segment, and a geometrical rule, indicating how the
elements present therein will be replaced in any further
steps of its construction (see Fig. 1): replace each bond by
a unit cell with p branches, each of them formed by b bonds
linking b−1 new inner sites. The fractal dimension for such
lattice is

df =
log(p b)
log(b)

· (7)

In the present work we consider the most simple case,
b = p = 2, so that df = 2. We identify the DHL’s by the
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number G (for generation), which counts the number of
times that the rule has been applied. G = 0 corresponds
to a single segment linking the two root sites. For any G,
the number of bonds is NG,B = 4G, the number of sites is
NG,S = 2(2 + 4G)/3, the number of bonds in any of the
shortest paths linking the two root sites is NG,P = 2G,
that is also equal to the number of distinct paths. The
magnetic system is constructed by placing an Ising spin in
each DHL site, interacting with all of its nearest neighbors.

To consider the Rudin-Shapiro aperiodicity, the cou-
pling constants Jij assume only 4 distinct values. Their
site dependent value are precisely defined: start from one
of the root sites, and assign sequentially Jij = J�, � =
A, B, C or D according to the sequence of letters emerg-
ing from the recursive application of (1). Restricting to the
situation of axial modulation, the system becomes aperi-
odic only along the paths between the root sites, while
all paths are constituted by the same sequences of bonds.
The external uniform field h is the same for all sites of the
lattice, independent on its local coordination.

3 Invariant sets and flows in parameter space

The geometrical growth process used in the construction
of DHL’s leads to exact scale invariant objects. When we
consider physical models defined on such structures, the
decimation procedure used in MKR formalism proceeds in
the opposite way to the growth process. Hence, the maps
linking the coupling parameters in two successive decima-
tion steps are also exact, so that critical properties of the
model under investigation can be precisely investigated.
In the case of a uniform model in zero-field case, a single
map results from the use of the MKR formalism. For the
present model, a set of four maps is required to account
for the four distinct coupling constants induced by the
Rudin-Shapiro rule (1). So let us define

x� = tanh[βJ�], � = A, B, C, D. (8)

The recursion relations in terms of these variables read

x
′
� =

2xµ(�)xζ(�)

1 + x2
µ(�)x

2
ζ(�)

, � = A, B, C, D. (9)

The critical properties of the model are defined by
the invariant sets of equations (9). Two of them are
the two trivial fixed points, FPI and FP0, with coordi-
nates (0, 0, 0, 0) and (1, 1, 1, 1), which correspond to the
uniform paramagnetic and ferromagnetic states at, re-
spectively, T = ∞ and T = 0. A non-trivial uniform
fixed point (UFP), lying in the hypercube diagonal, whose
coordinates

x� =
1
3


−1 +

(
17 +

√
297
)2/3 − 2

(
17 +

√
297
)1/3


 = 0.543689...,

� = A, B, C, D, (10)
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Fig. 2. The projection of the invariant sets onto the
plane (xA, xB) of the parameter space of the Ising model on
a DHL with interactions based on Rudin-Shapiro substitution
rule. The five fixed points, represented by stars are identified
by corresponding acronyms; and the seven distinct period-two
cycles by diamonds.

are equal to the fixed point’s coordinate of the uniform
model, is obtained by the real positive solution of the
equation

x4 − 2x + 1 = 0. (11)

The dynamics of the uniform model is restricted to
the hypercube diagonal of the Rudin-Shapiro parameter
space, which can be identified with the thermal direction.
It is easy to prove that, for the Rudin-Shapiro aperiodic
model, the linearized MKR transformation around the
UFP results in −→

X ′ = cMT−→X (12)

where
−→
X indicates the vector of components x�, � =

A, B, C, D, c = 0.839286 and MT is the transpose of M
defined by equation (3). In the uniform case, this unstable
fixed point has one single eigenvalue Λ1 = cλ1 > 1. The
flow defined by cMT is characterized by three unstable
directions, as |Λ2,3| > 1. There is a super stable direction,
corresponding to the fourth eigenvector Λ4 = 0. We call
it super stable as any component of the flow along this
direction shrinks to zero in a single step.

The critical set for this model must have one single
unstable eigenvalue, corresponding to the thermal eigen-
vector, as the other eigenvalues reflect geometrical prop-
erties of the Rudin-Shapiro sequence. Thus we looked for
further fixed points and period-two cycles. This root find-
ing problem, that can not be solved analytically, has been
carried out with the help of both algebraic and numer-
ical programs. We have found two further fixed points,
seven period-two cycles, the projection of which onto the
plane (xA, xB) is shown in Figure 2. Their coordinates
form rather symmetric figures in most of the planes where
they can be projected. The figure also suggests that the
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Table 1. The coordinates of the non-diagonal invariant sets of
the model: 7 period-two cycles Cn,i, n = 1, · · · , 7 and i = 1, 2,
and 2 fixed points, NCFP and CFP .

two non-diagonal fixed points could form a two-cycle, com-
pleting the ellipse where the fourteen points belonging to
the seven two-cycles lye. Table 1 indicates that all 64 co-
ordinates of the cycles Cn,j and non-diagonal fixed points
are selected from only 9 different values.

All of the seven period-two cycles have three unstable
eigenvalues |Λ| > 1 and a super stable Λ4 = 0. The two
non diagonal fixed points have different properties. There
is a non critical fixed point (NCFP), with coordinates

(xA, xB, xC , xD) = (0.34764, 0.79965, 0.96810, 0.51609),
(13)

and eigenvalues Λ1 = 1.79506, Λ2 = 1.3877, Λ3 =
−0.82865, and Λ4 = 0. Finally the critical fixed point
(CFP ), with coordinates

(xA, xB, xC , xD) = (0.96810, 0.51609, 0.79965, 0.34764),
(14)

has the correct spectrum expressed by Λ1 =
1.58655, Λ2 = −0.99955, Λ3 = 0.601187 and Λ4 = 0. As
we will show in the next sections, all physical properties
related to the CFP are corroborated by the explicit
evaluations within the TM approach.

Note that one vanishing eigenvalue is present in the
spectra for all investigated invariant sets of this model.
This is related to the fact that, if A = D and B = C, the
resulting sequence is periodic, as all symbols are mapped
onto a single group, i.e.,

A, B, C, D → AB. (15)

This is the direction of the eigenvector corresponding
to λ4. Thus, Rudin-Shapiro modulated spin models with
values for the coupling constants taken along this particu-
lar direction have the same critical behavior as the uniform
model.
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Fig. 3. The projection of the invariant sets (shown in Fig. 2)
onto the plane (y1, y2) of the parameter space expressed in
terms of the new variables yn, n = 1, · · · , 4.

In order to set up the critical manifold, we take advan-
tage of this super-stable direction for the analysis of the
flow in parameter space. We use

Γ =
1
2




1 1 1 1

1 1 −√
2 1 +

√
2 −1

1
√

2 − 1 −1 −√
2 −1

1 −1 −1 1


 , (16)

constructed with the eigenvectors of M, to define new vari-
ables yn = (Γ )−1

n� x�. In the same way, we can transform
the coupling constants (JA, JB, JC , JD) to a Γ defined ba-
sis (J1, J2, J3, J4). In this new basis, the coordinates of the
quoted fixed points are:

FPI : (0, 0, 0, 0); FPO : (2, 0, 0, 0);
UFP : (1.08738, 0, 0, 0);
CFP : (1.31574, 0.62985,−0.00939, 0);
NCFP : (1.31574,−0.08423,−0.08423,−0.45201).

(17)
Figure 3 illustrates the projection of the invariant sets in
the plane (y1, y2).

The evaluation of the critical exponents [10] based on
the eigenvalues of the CFP leads to:

ν =
ln 2
ln Λ1

= 1.50174 ; α = 2 − 2ν = −1.00349. (18)

As expected, the resulting values differ from those for
the uniform system, confirming that the fluctuations in
the coupling constants induced by the Rudin-Shapiro se-
quence are relevant.

A well known formal solution to the MKR equations
states that scaling part of the free energy behaves like

f(t) = |t|2−α
P

(
log 10 |t|
log 10Λ1

)
, (19)
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Fig. 4. One orbit (squares) of the renormalization flow pro-
jected in the hyperplane (y1, y2, y3) of the parameter space ex-
pressed in terms of the transformed variables yn, n = 1, · · · , 4.
This orbit, that leaves the neighborhood of CFP , is con-
strained to the manifold linking CFP to UFP The positions
of FPI, FP0, CFP and UFP are indicated by full circles.

where Λ1 is the unstable thermal eigenvalue of the renor-
malization flow close to the critical fixed point (or other
critical set), t is the reduced temperature t = |T − Tc| /Tc

and P is a periodic function with period 1. This includes
the possibility P = constant, what is actually verified in a
large number of cases. For systems with discrete scale in-
variance, as in the case of DHL and other fractal lattices,
P may actually oscillate [11]. For the value Λ1 = 1.58655
obtained for the CFP, we find the frequency ω of log-
periodic oscillations as

ω =
2π

log 10Λ1
= 31.34481... (20)

Now we focus on the renormalization flow in parameter
space. With exception of NCFP, all other fixed points lye
on the y4 = 0 plane. We illustrate, in Figure 4, their posi-
tion in the sub-space spanned by the axes (y1, y2, y3). For
all fixed points, the thermal eigenvector points along the
y1 axis and, in the uniform case, the flow is restricted to
this axis, where the UFP and the two trivial fixed points
lye. When different values for the coupling constants are
considered, the flow leaves this axis and meanders in the
three dimensional space. Trajectories leaving the neigh-
borhood of UFP feel the attraction of the CFP before
being attracted to either of the trivial fixed points. The
form of the trajectories suggests the presence of a higher
than one-dimensional critical manifold linking the UFP
to the CFP , where the renormalization critical dynamics
occurs.

It is difficult to precisely define this manifold, while
some of its geometrical properties can be obtained by trac-
ing the loci of a large number of orbits leaving the UFP .
However, as the CFP is also unstable, the trajectories de-
viate easily from the manifold. In order to circumvent this

problem [12], we have considered the inverse maps of (9),
which read

xµ(�)xζ(�) =
1 −√1 − x′

�
2

x′
�

� = A, B, C, D. (21)

Now we iterate (21), restricted to the condition y4 =
xA−xB −xC +xD = 0, starting from several points in the
stable manifold close to CFP defined by (14). Upon iter-
ation, the trajectories will be repelled from CFP in the
direction of UFP, indicating more precisely the form of
the critical manifold, as illustrated in Figure 4. Note that
this manifold is more than one-dimensional since, for the
inverse transformation, beside the super-stable direction,
the UFP has three other stable directions, and the CFP
has just another stable direction.

Before closing this section, we stress that the best
value for the second eigenvalue of the CFP is indeed
Λ2 = −0.99955. This value was carefully investigated
and, working with 16 digits variables in both Fortran
and Mathematica codes, it does not come closer to the
value −1. This is a relevant issue as, if Λ2 = −1, one of
the flow directions in parameter space has the characteris-
tics of a center manifold. In such cases, the character of the
flow depends on second order terms. Within MKR frame-
work, this is called a marginal value, which may lead to
non-universal behavior depending on the nature of the in-
finitesimal perturbations like non-zero field. As we will dis-
cuss in the next section, the critical magnetic exponents,
evaluated within the TM method, do depend on the val-
ues of the coupling constants. This may be related to this
particular value for Λ2 ≈ −1, but, strictly speaking, we
can not argue the presence of a marginal eigenvalue to
explain this non-universal behavior.

4 Transfer matrix formulation

Although the MKR analysis reveals much of the critical
behavior of the model, its whole characterization requires
the knowledge of the free energy. For the present situation,
this evaluation particularly important for the following
reasons: i) we could only numerically locate the fixed point
and higher order invariant sets of the MKR maps. Even
with an exhaustive scanning for possible solutions, we can
not disclose the existence of further fixed points and higher
order cycles that could affect the critical behavior. We
recall that, for other aperiodic systems [13], the criticality
was found to be described by a two-cycle. ii) The value
of Λ2 for the CFP could raise doubts on whether it was
actually responsible for the critical behavior. For DHL,
the evaluation of the free energy can proceed within the
same renormalization framework [14,15]. In this work, the
free energy is evaluated within the TM formulation, that
also leads to the correlation length ξ, particularly useful
for the identification of the critical point, due to its steep
divergence at Tc.

DHL’s are bounded by two root sites in any genera-
tion G. Thus, a 2 × 2 matrix TG is sufficient to describe
all interactions present along the different paths that link
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the two root sites. TG depends only on the 4 distinct
states for the spins at the root sites, provided the con-
tributions coming from all different configurations defined
by the states of intermediate spins can be accounted for.
The structure of TG, for the Rudin-Shapiro case, is sim-
ilar to that one for the homogeneous system or for the
aperiodic model induced by the double-period rule dis-
cussed in reference [16]. A matrix map, which expresses
TG+1 = TG+1(TG) can be derived in a straightforward
way, leading to a set of maps which expresses the matrix
elements of TG+1 in terms of those of TG. For the present
case, four matrices TG,� , � = A, B, C and D, are required
for the description of all different configurations for any
value of G.

The resulting maps are highly non linear and can be
hardly integrated. However, they can be easily iterated
on a computer, leading to numerically exact results for
the thermodynamical functions per spin in the limit G →
∞. To this purpose it is convenient to make a variable
transformation, and write the set of maps in terms of the
G−dependent free energy per spin fG,� and correlation
length ξG,�. They are defined in terms of the eigenvalues
of TG,�, ηG,� and εG,� (ηG,� ≥ εG,�), � = A, B, C, D, as

fG,� = − T

NG,S
log ηG,�,

ξG,� = NG,P / log (ηG,�/εG,�) . (22)

In terms of these variables, the maps for the model
with Rudin-Shapiro aperiodicity read:

fG+1,� = 2
NG,S

NG+1,S

(
fG,µ(�) + fG,ζ(�)

)

− T

NG+1,S
ln

[
1 + z2

G,µ(�)z
2
G,ζ(�)

2

]

ξG+1,� = 2
ξG,µ(�)ξG,ζ(�)

ξG,µ(�) + ξG,ζ(�)

×
[
1 +

ξG,µ(�)ξG,ζ(�)

ξG,µ(�) + ξG,ζ(�)
ln

(
1 + z2

G,µ(�)z
2
G,ζ(�)

2

)]−1

,

(23)

with
zG+1,� = 2

zG,µ(�)zG,ζ(�)

1 + z2
G,µ(�)z

2
G,ζ(�)

, (24)

where
zG,� = exp (−NG,P /ξG,�) , (25)

and µ(�), ζ(�), with � = A, B, C, D, are given by (2).
Maps (23) are iterated starting from temperature depen-
dent initial conditions, corresponding to the actual values
of the functions in the G = 0 generation, where a single
interaction J� between the root sites is present:

η0,� = 2 cosh(βJ�) , ε0,� = 2 sinh(βJ�). (26)

Other thermodynamical functions are obtained by de-
riving (23) with respect to the temperature, leading to
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t, T>Tc

Fig. 5. Curve ξ × T for (e2, e3, e4) = (0.4, 0, 0). In the insert,
curves log10(ξ) × log10(t), when T > Tc, for the non-uniform
model (0.4, 0, 0) (solid) and for the uniform model (0, 0, 0)
(dash).

maps for the entropy, sG,� = −∂fG,�/∂T and specific heat
cG,� = −T ∂2fG,�/∂T 2. The enlarged set includes also
maps for the derivatives of zG,�. Finally, magnetization
and susceptibility follow from maps for the derivatives
of fG with respect to the magnetic field. The correspond-
ing maps for a two-letter aperiodic model have been ex-
plicitly indicated in reference [16].

The maps (23) are iterated with double precision
FORTRAN variables until a very high relative preci-
sion (10−16) is reached. Depending on the temperature,
a number of ∼40−70 iterations is required for this con-
vergence, so that is quite reasonable to call the evaluation
process as a numerical thermodynamical limit. Iterations
were performed for a wide temperature interval. However,
we concentrate our discussion to the T interval around the
critical temperature Tc, where we can evaluate the criti-
cal exponents and other properties of the transition. The
value for Tc can be obtained with, 16 digits precision, by
the presence of a singular behavior in the numerical values
for the thermodynamical functions, e.g., in the behavior
of ξ(T ): it has a well defined value for T > Tc, but it
diverges for any T < Tc.

5 Thermodynamical behavior

To better discuss our results, it is convenient to use the
transformed set of coupling constants Ji, i = 1, 2, 3, 4, as
introduced in the Section 3. In order to define the con-
tribution of the coupling constants, let ei = Ji/J1, i =
2, 3, 4. The discussion about the influence of the coupling
constants on the critical behavior can be restricted to the
space (e2,e3, e4).

Typical results for the behavior of ξ, for (e2, e3, e4) =
(0.4, 0, 0) are shown in the Figure 5. In the insert we draw
log 10ξ ×log 10t, for the same data and also for the uniform
model e2 = e3 = e4 = 0. The different critical behavior is
expressed by different slopes.
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Table 2. Results from the TM analysis for several choices of (e2, e3, e4) the critical exponents β, γ, ν and α and the frequency ω
were obtained fitting the data with the function (27).
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Fig. 6. Plots of d(log 10ξ)
d(log 10t)

× log 10t for two different values

of (e2, e3, e4): (0.4, 0, 0) (solid) and (−0.1, 0.1, 0) (dot). The two
curves oscillate about the same horizontal line, which equals
the value of ν.

To better quantitatively analyze the obtained data for
the different thermodynamical functions g(t) = c, ξ, m, χ,
we considered the derivatives G = d(log 10g)

d(log 10t) , as function
of x = log 10(t). Typical results, as those shown in Fig-
ure 6, suggest that the data can be fitted by the function

G(x) = a +
c

xd
+

N∑
n=1

bn cos(nωx + φn). (27)

The parameter c in (27) measures the distance from the
data points to the actual scaling region in the neighbor-
hood of Tc. When the points belong to the scaling re-
gion (c ≡ 0) the fit is expressed in terms of the critical
exponent (a), the frequency ω, and the amplitudes and
phases (bn and φn) of the oscillatory function. Usually we
obtain very good results for N = 2.

Results for several choices for (e2, e3, e4) are summa-
rized in the Table 2. The high quality of the procedure is
attested by very low χ2 values for all fittings (not shown).
First note that the exponents for the periodic sequences
obtained along the e4 direction are the same as the uni-
form model (lines 1−2). Then, values for ν for any other

direction agree, with up to 5 significant digits, to that
obtained within the MKR analysis (18), confirming that
CFP actually describes the critical behavior. For distinct
sets of coupling constants as shown in Figure 6, the corre-
sponding functions G have the same exponent, but differ
from each other by the values for bn and φn, i.e., on the
form of the periodic function P . The hyperscale relation,
for independently evaluated values of α and ν is also con-
firmed with high precision. On the other hand, the value
for ω is only the half of the one shown in (20). The dis-
crepancy can be understood by considering the eigenvalue
spectrum of the CFP : due to the presence of the negative
eigenvalue Λ2, a trajectory in parameter space returns to
the same side of a neighborhood of the CFP only after
each two iterations of the MKR transformation, doubling
the period of oscillation. This shows that the formal solu-
tion (19), which neglects the effect of other eigenvalues in
the renormalization flow, is not complete and should be
enlarged to coop with more complex situations.

Table 2 clearly shows that β and γ depend on the
particular choice made for (e2, e3, e4), indicating a break
of universality for the magnetic critical behavior of the
model. This situation is completely distinct from both the
one for the thermal exponents ν and α of this model, as
well as from the analysis for magnetic exponents for other
aperiodic model with relevant fluctuations. Figure 7 illus-
trates the situation for exponents β and γ. They clearly
indicate that, for two different choices of (e2, e3, e4) the
curves d(log 10m)

d(log 10t) and d(log 10χ)
d(log 10t) oscillate, with the same fre-

quency ω, about different constant values which represent
the actual value of the critical exponents. The quality of
the shown data is similar to the one for ξ.

Table 2 also indicates that the magnetic exponents
vary along the different directions in the (e2, e3, e4) space,
and that they remain invariant by two inversion symme-
try operations with respect to both e2 → −e2 (lines 5−7)
and e3 → −e3 (lines 3−4). However this does not occur
in relation to e4 (lines 8−9). Test for the accuracy of the
results can be obtained by the Rushbrook relation. Ta-
ble 2 also shows that it is satisfied for all investigated val-
ues for (e2, e3, e4). This strongly supports the claims for a
break of universality for Rudin-Shapiro aperiodic model.
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Fig. 7. Plots of d(log 10m)
d(log 10t)

(a) and d(log 10χ)
d(log 10t)

(b)× log 10t for the same values of (e2, e3, e4) as in the Figure 6. The curves now

oscillate about two different horizontal values, indicating distinct values of β and γ.

6 Conclusions

In this paper we analyzed, with great detail, the behavior
of the Rudin-Shapiro aperiodic Ising model on the DHL.
Several results give a consistent picture for the thermody-
namical and critical behavior of the model.

Our results explicitly confirm that, for almost all
choices of values of the coupling constants, the model
with Rudin-Shapiro aperiodicity brings the model out of
the universality class of the uniform model. The exception
refers to choices for the constants along the direction of
one vanishing eigenvector of the substitution matrix that
gives rise to periodic sequences. The new critical behavior
is described by an off diagonal CFP . We further local-
ized 7 non-critical, unstable period-two cycles, and one off
diagonal, fully unstable fixed point. All invariant sets have
one vanishing eigenvalue, that is related to the emergence
of a periodic sequence.

The critical based on the off diagonal CFP contrasts
with that obtained for similar aperiodic models on DHL
with relevant fluctuations, where [13] the new critical be-
havior of the aperiodic is governed by a period-two cy-
cle. The MKR analysis included the characterization of
a higher than one dimensional invariant manifold linking
the critical points of the uniform and aperiodic model.
Its localization followed the iteration of the forward and
backward MKR maps.

The results based on the MKR analysis were extended
by the direct evaluation of the free energy and its deriva-
tives within the TM method, indicating that the critical
behavior is indeed controlled by the CFP . The TM re-
sults shows that the frequency of log periodic oscillations
close to Tc, as evaluated by the simple formal solution (19)
misses a factor 1/2. This is related to the presence of a neg-
ative eigenvalue Λ2, the influence of which is not included
in that equation.

The TM analysis uncovered a very subtle break of uni-
versality which affects the magnetic critical behavior only.
The exponents β and γ seem to vary continuously for
different directions in the (e2, e3, e4) space. However the
Rushbrook and hyper-scale relations are always verified. A

possible explanation for this unusual behavior is found in
the MKR analysis: one attractive eigenvector of the CFP
is associated to a very slow dynamics, as the absolute value
of its corresponding eigenvalue is very close to 1. Although
we can not indicate the presence of a marginal operator,
this very slow dynamics can suffer the influence of external
fields that destroys the universal behavior.

The authors are much indebted to T.A. Haddad, S.G. Coutinho
and S.R. Salinas for helpfully discussions and suggestions. The
work was partially supported by CNPq.
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